Основные понятия теории графов: различия между версиями
Глеб (обсуждение | вклад) |
Глеб (обсуждение | вклад) |
||
Строка 9: | Строка 9: | ||
Граф - это набор вершин (точек) и соединяющих их отрезков (рёбер). | Граф - это набор вершин (точек) и соединяющих их отрезков (рёбер). | ||
− | Примеры : | + | Примеры: |
− | |||
− | |||
Две вершины, соединенные ребром, называют смежными вершинами. Обычно в задачах $N$ - количество вершин, а $M$ - ребер. Количество ребер, исходящее из вершины называют степенью вершины $d(v)$. Для вершины $a$ ребро $(a, b)$ называется инцидентным ей. На рисунке ниже вершине 8 инцидентно только ребро (4, 8), а вершине 10 ребра (2, 10) и (5, 10). | Две вершины, соединенные ребром, называют смежными вершинами. Обычно в задачах $N$ - количество вершин, а $M$ - ребер. Количество ребер, исходящее из вершины называют степенью вершины $d(v)$. Для вершины $a$ ребро $(a, b)$ называется инцидентным ей. На рисунке ниже вершине 8 инцидентно только ребро (4, 8), а вершине 10 ребра (2, 10) и (5, 10). |
Версия 16:01, 26 сентября 2019
Основные определения
Формальное определение:
Графом $G$ называется пара множеств $G = (V, E$, где $V(G)$ — непустое конечное множество элементов, называемых вершинами графа, а $E$ — множество пар элементов из $V$ (необязательно различных), называемых ребрами графа. $E = \{(u , v)\ | u, v \in V\}$ — множество ребер графа $G$, состоящее из пар вершин $(u, v)$. Ребро $(u, v)$ соединяет вершины $u$ и $v$.
Простое определение:
Граф - это набор вершин (точек) и соединяющих их отрезков (рёбер).
Примеры:
Две вершины, соединенные ребром, называют смежными вершинами. Обычно в задачах $N$ - количество вершин, а $M$ - ребер. Количество ребер, исходящее из вершины называют степенью вершины $d(v)$. Для вершины $a$ ребро $(a, b)$ называется инцидентным ей. На рисунке ниже вершине 8 инцидентно только ребро (4, 8), а вершине 10 ребра (2, 10) и (5, 10).
Если какие-то две вершины соединены более, чем одним ребром, то говорят, что граф содержит кратные ребра. Если ребро соединяет вершину саму с собой, то такое ребро называют петлей.
Простой граф не содержит петель и кратных ребер. Если не сказано ничего про наличие петель и кратных ребер, мы будем всегда считать, что граф простой.
Также часто рассматривают ориентированные графы — это графы, у которых ребра имеют направление, а иначе граф – неориентированный.